Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(1): 109-121, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37639327

RESUMO

We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Neurônios/metabolismo , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , Complexos Endossomais de Distribuição Requeridos para Transporte
2.
Acta Neuropathol ; 147(1): 1, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019311

RESUMO

The G4C2 repeat expansion in the C9orf72 gene is the most common genetic cause of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Many studies suggest that dipeptide repeat proteins produced from this repeat are toxic, yet, the contribution of repeat RNA toxicity is under investigated and even less is known regarding the pathogenicity of antisense repeat RNA. Recently, two clinical trials targeting G4C2 (sense) repeat RNA via antisense oligonucleotide failed despite a robust decrease in sense-encoded dipeptide repeat proteins demonstrating target engagement. Here, in this brief report, we show that G2C4 antisense, but not G4C2 sense, repeat RNA is sufficient to induce TDP-43 dysfunction in induced pluripotent stem cell (iPSC) derived neurons (iPSNs). Unexpectedly, only G2C4, but not G4C2 sense strand targeting, ASOs mitigate deficits in TDP-43 function in authentic C9orf72 ALS/FTD patient iPSNs. Collectively, our data suggest that the G2C4 antisense repeat RNA may be an important therapeutic target and provide insights into a possible explanation for the recent G4C2 ASO clinical trial failure.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Oligonucleotídeos Antissenso/farmacologia , Demência Frontotemporal/genética , Esclerose Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , RNA Antissenso , Dipeptídeos , Neurônios
3.
FEBS Lett ; 597(20): 2546-2566, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657945

RESUMO

Nuclear pore complexes (NPCs) play a critical role in maintaining the equilibrium between the nucleus and cytoplasm, enabling bidirectional transport across the nuclear envelope, and are essential for proper nuclear organization and gene regulation. Perturbations in the regulatory mechanisms governing NPCs and nuclear envelope homeostasis have been implicated in the pathogenesis of several neurodegenerative diseases. The ESCRT-III pathway emerges as a critical player in the surveillance and preservation of well-assembled, functional NPCs, as well as nuclear envelope sealing. Recent studies have provided insights into the involvement of nuclear ESCRT-III in the selective reduction of specific nucleoporins associated with neurodegenerative pathologies. Thus, maintaining quality control of the nuclear envelope and NPCs represents a pivotal element in the pathological cascade leading to neurodegenerative diseases. This review describes the constituents of the nuclear-cytoplasmic transport machinery, encompassing the nuclear envelope, NPC, and ESCRT proteins, and how their structural and functional alterations contribute to the development of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Poro Nuclear , Humanos , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Membrana Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Doenças Neurodegenerativas/metabolismo
4.
iScience ; 25(11): 104993, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36299999

RESUMO

The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...